From buds that may not burst - Marine Biotechnology in Europe

Levent Piker, CRM - Coastal Research & Management / oceanBASIS GmbH, Kiel

Piker, CRM/oceanBASIS

Better off Blue: Marine biobased materials and chemicals, 28.9.17 Berlin

Content

- 1. Innovation potential of living marine resources
- 2. Turning knowledge into products own experiences
- 3. Ocean's integrity and biodiversity is the basis for a wealthy society

Innovation potential

- predominantly unexplored oceanic regimes
- → expectation of a vast amount of new natural substances
- highly developed (bio-)chemical mechanisms for defense and reproduction (2,7 * 10⁹ years more "experience")
- **Congruences** of mineral and trace element composition in human cell fluid and ocean
- **Biodiversity**: all 33 animal clades live in the sea, 15 on land

What is the Monetary Value of Ocean's Biodiversity?

Ecosystem service value:

US \$ 563 billion - 5.69 trillion for anti-cancer drugs of marine origin

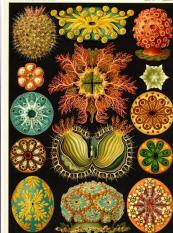
(Erwin et al. 2010)

Algae-based active ingredients

- minerals, salts
- trace elements
- special polysaccharides
- polyphenols
- special **amino acids**
- vitamins
- carotinoids

- other secondary phytochemicals and antioxidants




Turning knowledge into products: oceans are a treasure trove for innovations

Structures / functions in nature

Academia SME/Industry

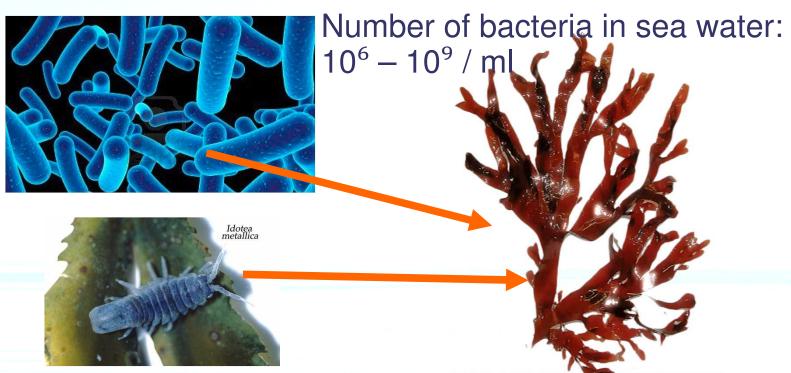
Consumer's / society's demands

Erich Haeckel: Kunstformen der Natur, 1899-1904

For example:

Demands and trends

Consumer study by Mintel:

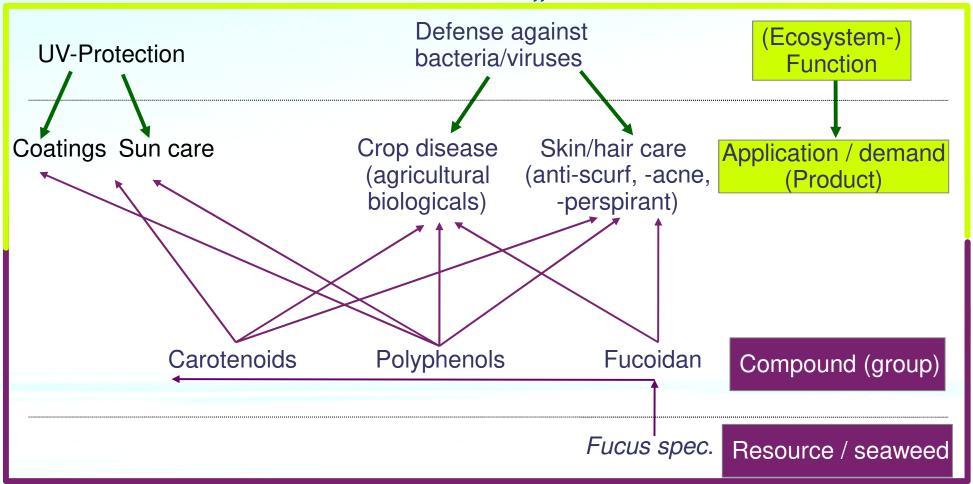

OECD 2017:

healthy living is one of the most important global megatrends

High hostile pressure on algae surface

Grazing, colonising, degrading etc.

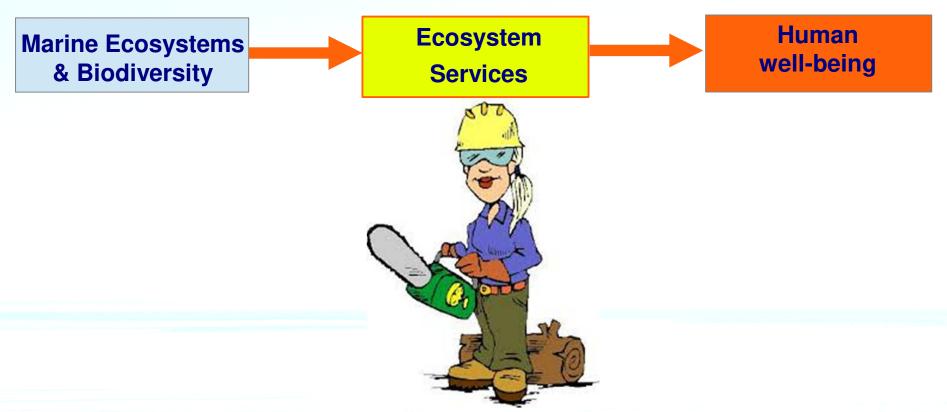
→ mechanisms of protection



Piker, CRM/oceanBASIS

Better off Blue: Manage biobased materials and chemicals, 28.9.17 Berlin

Systematic approach


Functional scheme "Protection"

Piker, CRM/oceanBASIS

Better off Blue: Marine biobased materials and chemicals, 28.9.17 Berlin

Better off blue – let's go!

Products and developments from CRM / oceanBASIS – Examples:

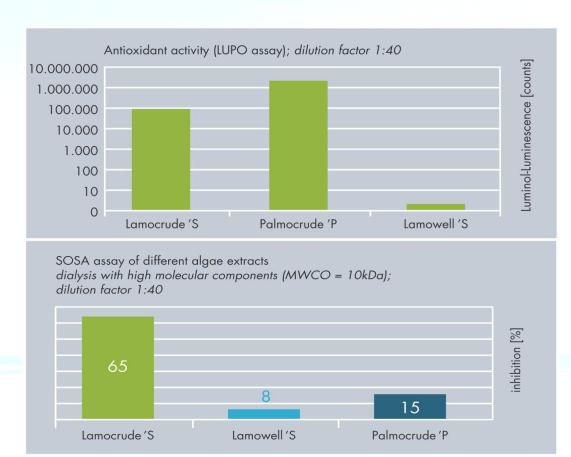
Prevention and protection (#1) → Antibacterial activity

Inhibition [%]

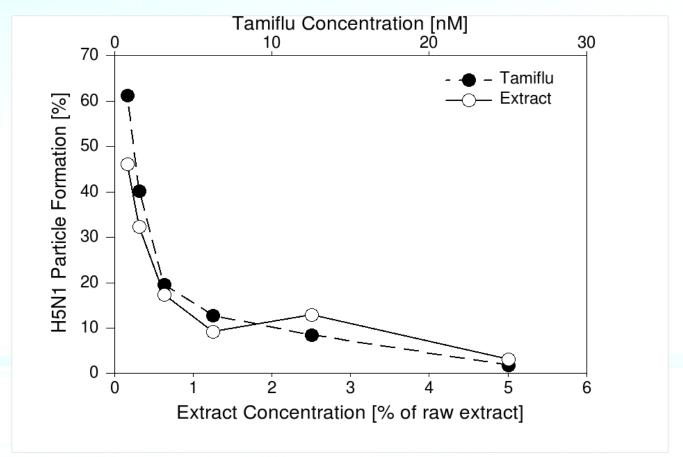
	St. aureus			MRSA		St. epidermidis		Ps. aeruginosa		B. epidermidis	
Com m ercial											
Extracts		5 %	10%	5 %	10%	5 %	10%	5 %	10%	5 %	10%
Lam ocrude'S	Ex242	47***	52***	neg.	neg.	neg.	neg.	neg.	neg.	neg.	neg.
Lamowell'S	Ex243	33	72***	neg.	neg.	neg.	neg.	neg.	34	neg.	neg.
Palm ocrude	E x 2 4 4	neg.	neg.	neg.	neg.	neg.	neg.	neg.	neg.	neg.	neg.
Fucoidan	Ex245	49	41	neg.	26	72	82	30	31	neg.	26
Kollagen	Ex246	34	neg.	neg.	neg.	neg.	neg.	33	29	20	29
Extracts under											
Development		1%		1%		1%		1%		1%	
CCL16	E x 2 4 7	n.b.		96		87		n.b.		n.b.	
AAC148	Ex248	100		100		100		26		neg.	
Control	D MS O	neg.		neg.		neg.		28		20	
AAC 150F	Ex249	n.b.		n.b.		n.b.		n.b.		n.b.	
CLA1	Ex250	n.b.		n.b.		n.b.		n.b.		n.b.	

Algae compounds can strongly inhibit growth of S. aureus,

S. epidermis and MRSA


Piker, CRM/oceanBASIS

Better off Blue: Marine biobased materials and chemicals, 28.9.17 Berlin


Prevention and protection #2 → Antioxidant activities

Antioxidant capacity (LUPO)

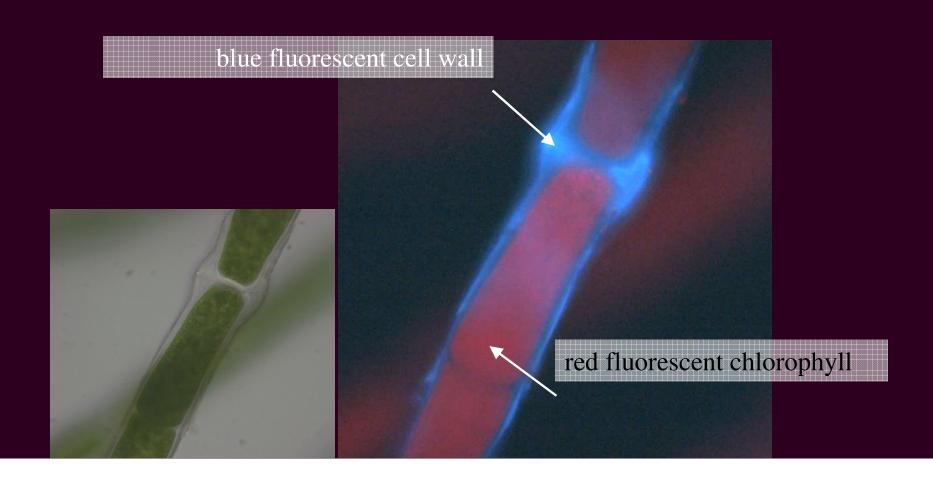
Radical scavenger activity (SOSA)

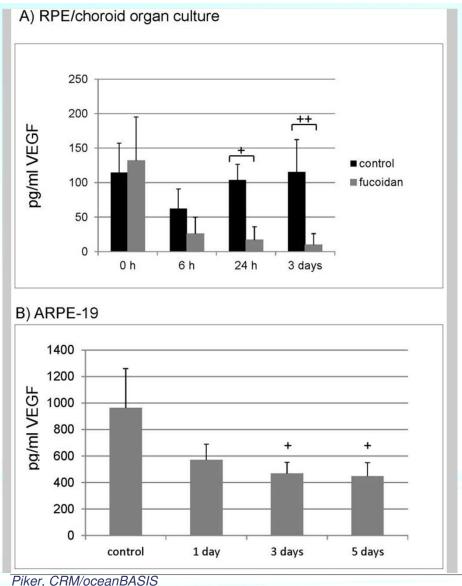
Prevention and protection #3 → Antiviral activities

#4: Protection against UV-B-radiation

red chlorophyllfluorescence bluegreen

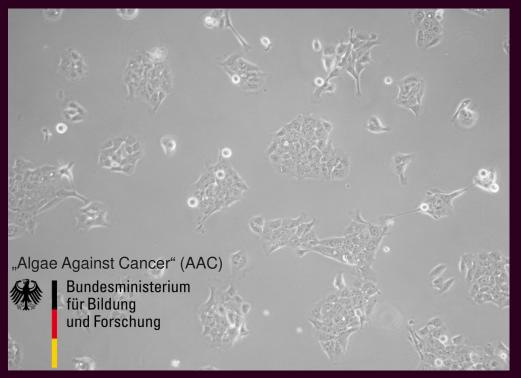
Algae filament with cell wall and chlorophyll

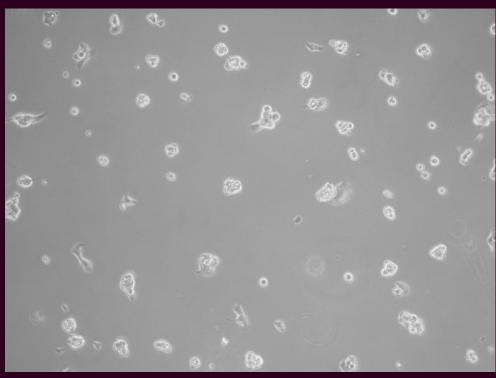

Wir fördern Wirtschaft



die Europäische Union - Europäischer Fonds für regionale Entwicklung (EFRE), den Bund und das Land Schleswig-Holstein

Blue fluorescent UV-protecting agents in *Cladophora sp.*


#5: Prevention of aging symptoms (e.g. AMD)


Fucoidan reduces expression of Vascular Endothelial Growth Factor (VEGF) in the retinal pigment epithelium and reduces angiogenesis in vitro. (Dithmer et al. 2014)

#6: Extract from *Fucus vesiculosus* inhibits growth of pancreatic cancer cells

Control KF1 extract

(after 24 h incubation)

Geisen *et al.* 2015 Zenthoefer *et al.* 2017

Main marketed products

→Active ingredients for cosmetic market

Lamocrude 'S

Protecting aquous extract from S. latissima, contains unique antioxidative algae sugars and polyphenol

Collagen from the Deep Ocean

Superior moisturizing properties.
Sustainable resource of pure, native collagen.

The Enhanced Brown Algae Extract

Soothing and nourishing properties.
Enhanced bioavailability by long cold fermentation of S. latissima.

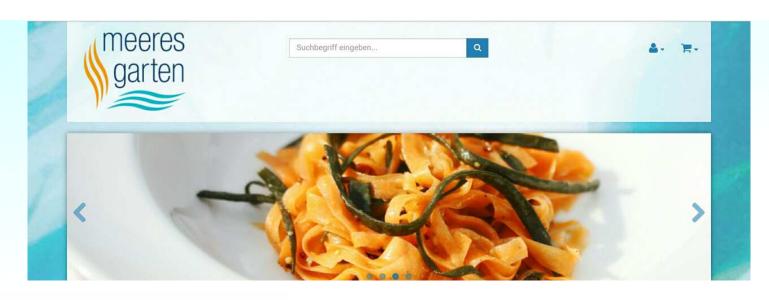
Aquous extract of *P. palmata*. Improving skin elasticity by promoting cell matrix proteins. Cytoprotective through amino acids and polyphenols.

oceanwell

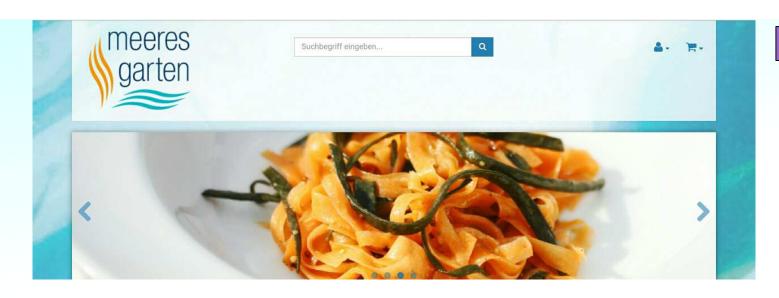
Marine natural cosmetics

- moisturizing,
- protecting
- revitalizing

vegan



The pure Power of the Sea

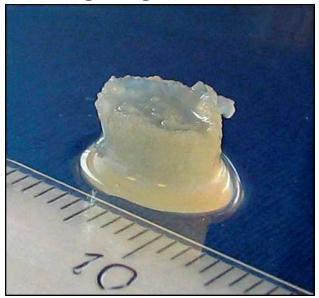


Healthy diet and refining cuisine

→ Seaweed flakes

ocean food

→ Natural algae relish ("umami")


ocean biotech

Collagen from marine invertebrates

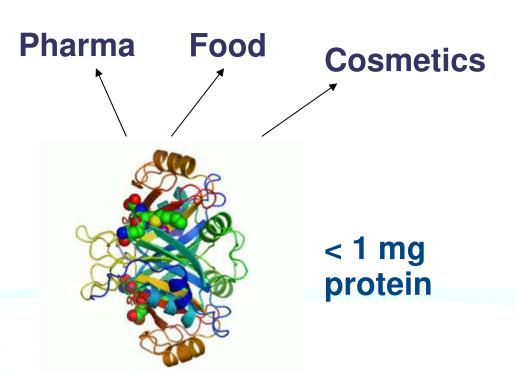
Wound healing

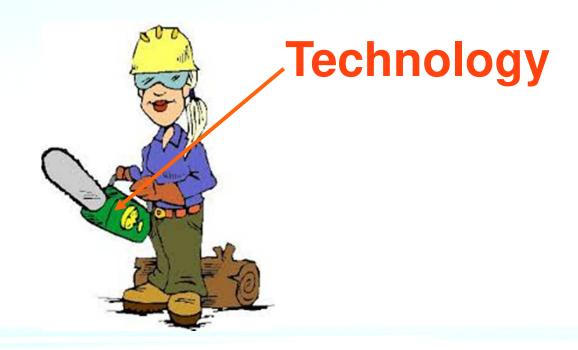
Cartilage regeneration

Bioinformatics / "Algaeomics": oceanBASIS's first level Algae-Enzyme catalog

EC-number	Algae species/Contig	orient.	homolog. protein	score	perc.ident.	description				
_	▼	~	_	▼	▼	>				
EC=1.10.2.2	Eremos pha era _3607	rev	F6H425_VITVI	414	77.78	RecName: Full=Ubiquinol-cytochrome c reductase iron-sulfur subunit; EC=1.10.2.2				
EC=1.10.2.2	Fucus Vesiculos us_1382	Fucus Vesiculos us _ 1382 rev				RecName: Full=Ubiquinol-cytochrome c reductase iron-sulfur subunit; EC=1				
EC=1.10.2.2	Polysiphonia_12913	for	A8JJ26_CHLRE	662	59.61	RecName: Full=Ubiquinol-cytochrome c reductase iron-sulfur subunit; EC=1.10.2.2				
EC=1.10.2.2	Saccharina_5966	rev	ARII26 CHIRF	617	56 00	RecName: Full=Ubiquinol-cytochrome c reductase iron-sulfur subunit; EC=1.10.2.3				
EC=1.10.2.2	SaccharinaNorr Drot	oino				chrome c reductase iron-sulfur subunit; EC=1.10.2.2				
EC=1.10.2.2	SaccharinaNorr Ulva_4904 Prot	ems				chrome c reductase iron-sulfur subunit; EC=1.10.2.2.				
EC=1.10.3.3	Polysiphonia_2					dase; EC=1.10.3.3; Flags: Fragment;				
EC=1.10.3.9	Fucus Vesiculos					(B) protein; EC=1.10.3.9; AltName: Full=32 kDa thyla				
EC=1.10.3.9	Polysiphonia_2 Base	ed on	green plant		(B) protein; EC=1.10.3.9; AltName: Full=32 kDa thyla					
EC=1.10.3.9				1		(B) protein; EC=1.10.3.9; AltName: Full=32 kDa thyla				
EC=1.10.3.9	Saccharina_579 homologous proteins only					(B) protein; EC=1.10.3.9; AltName: Full=32 kDa thyla				
EC=1.10.3.9	Spirulina_1318					(B) protein; EC=1.10.3.9; AltName: Full=32 kDa thyla				
EC=1.10.3.9	Ulva_897 Ulva_11514 EC-numbers					(B) protein; EC=1.10.3.9; AltName: Full=32 kDa thyla				
EC=1.10.9.1						610 (B) protein; EC=1.10.3.9; Althame: Full=32 KDa thyla				
EC=1.10.99.1	Eremos pha era_					f complex iron-sulfur subunit; EC=1.10.99.1;				
EC=1.10.99.1	FucusVesiculos				f complex iron-sulfur subunit; EC=1.10.99.1;					
EC=1.10.99.1	Polysiphonia_1				f complex iron-sulfur subunit; EC=1.10.99.1;					
EC=1.10.99.1	Ulva_6218				f complex iron-sulfur subunit; EC=1.10.99.1;					
EC=1.1.1.100	Eremos pha era _				hydrogenase, putative; EC=1.1.1.100;					
EC=1.1.1.100	Fucus Vesiculos _		_		carrier-protein] reductase, putative; EC=1.1.1.100;					
EC=1.1.1.100	Polysiphonia_23806	rev	B9TN94_RICCO	225	41.60	SubName: Full=3-oxoacyl-[acyl-carrier-protein] reductase, putative; EC=1.1.1.100;				
EC=1.1.1.100	Saccharina_23600	rev	B9TAF7_RICCO	448	40.40	SubName: Full=3-oxoacyl-[acyl-carrier-protein] reductase, putative; EC=1.1.1.100;				

A straightforward way to go from candidate sequences to protein:


Candidate transcript sequence: ORF


Gene synthesis

CFS: Cell-Free protein expression

Challenges and bottlenecks

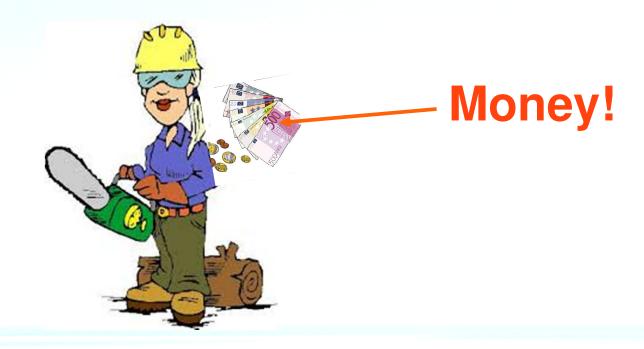
Technology: Seaweed Processing, Extraction

ALLIANCE

Challenges and bottlenecks

Safety: Medical products

ISO 10993: Standards for evaluating the biocompatibility of medical devices


Safety: Personal care products

Self-Documentation showing that the product contains nothing harmful:

- Safety data sheet
- Product specification
- GRAS Generally Recognised As Safe

(- Toxicity)

Challenges and bottlenecks

Money: No risk no success

- Innovation slump: Dramatic decrease of innovative SME in Germany, 2015:

-20%

- Mainly due to

lack of risk capital

(Actual Innovation Report of KfW)

Challenges and bottlenecks

Project "FucoSan" & Interreg

Establishment of a fucoidan-based value chain using endemic seaweed

- → Sustainable harvest (sampling/cultivation)
- Controlled quality of endemic algae
- Innovative and sustainable processing
- New compound quality
- New products (cosmetics, pharma)

Leitfaden für nachhaltige marine Aquakultur

P. Krost S. Rehm M. Kock L. Piker

Inhalt

Vorwort Zusammenfassung		IV VI	2	Machbarkeitsphase	11
		VI	2.1	Raumeignung	12
1	Inspirationsphase	1	2.2	Eingrenzung der Arten	13
1.1	Idee	1	2.3	Wirtschaftlichkeit	14
1.2	Nachhaltigkeit	2	2.4	Fazit	14
1.2.1	Produktqualität	3			
1.2.2	Prozessqualität	4			
1.2.3	Tierwohl	4	0	DI I	
1.2.4	Soziale Verantwortung	5	3	Planungsphase	15
1.3	Beispiele unterschiedliche	r	3.1	Raum	15
	Anlagetypen	6	3.1.1	Flächenbedarf	15
1.3.1	Netzkäfiganlagen		3.1.2	Naturräumliche Eignung	16
	(Fischproduktion)	6	3.1.3	Meeresboden	19
1.3.2	Miesmuschel-Bodenkulturen				
1.3.3			3.2	Wasser	19
1.3.4	Austernkultur	8	3.2.1	Basisparameter	20
1.3.5	Makroalgen-Farm	9	3.2.2	Schadstoffe	20
1.3.6	Kreislaufanlagen an Land, geschlossen / halbgeschloss	en	3.2.3	Biologische Probleme	21
	(Fischproduktion)	10	3.3	Zielorganismen	22
1.3.7	Offene Durchflussanlage		3.3.1	Zuckertang	23
	(Algen)	10	3.3.2	Meerampfer	24
			3.3.3	Roter Lappentang	24

			r	A fl 1	
	Garnelen	24	5	Aufbauphase	41
FF-03-F-03-F-1	Miesmuschel	24			
	Pazifische Auster	25	5.1	Beantragung /	
	Dorsch	26		Genehmigungen	41
	Lachs	26	5,1.1	Wasser- und Schifffahrts-	144
	Regenbogenforelle	26	F 7 0	ämter	41
3.3.10	Steinbutt	26 26	5.1.2 5.1.3		43 44
	Wolfsbarsch	26	5.1.4	Tierschutzgesetz / Küsten-	44
F4-F-0000	Potenzielle Arten	27	3,1.4	fischereiverordnung	45
3.3.13	Poletizielle Al lett	21	5.1.5	Lebensmittelrecht	45
3.4	Technik	27	3,1.3	Lebensiimerieum	77
3.4.1	Anlage auf See	27	5.2	Kommunikation	45
3.4.2	Anlagen an Land	29			335
3.4.3	Arbeitsboot	29	5.3	Austonnung	46
3.5	Konkurrierende Nutzunge	en	5.4	Aufbau der Anlage	46
	und gesellschaftliche				
	Akzeptanz	30			
3.6	Wirtschaflichkeit:		6	Betrieb	47
5.0	Ökonomie = Ökologie	31	× .	Domos	330
3.6.1	Businessplan	31	6.1	Umweltmonitoring	47
3.6.2	Abschätzung der Wirtschaft-				
	lichkeit	31	6.2	Lebensmittelsicherheit	50
			6.3	Ökologische Aquakultur	56
	and the second of the		6.3.1	Europäisches Bio-Siegel	56
4	und wie wird's		6.3.2	Deutsche Verbandssiegel	57
	I . I .		6.3.3	Vorbereitung und Ablauf	
	ökologisch?	36		der Ökozertifizierung	58
4.1	Vermeidbares	36	6.4	Stabilisierung und	
4.2	Minimierbares	37		Optimierung des Betriebes	60
4.2	Millimerbures	3/		Glossar	61
4.3	Immantentes	37		0,000	70
4.3.1	Fischfutter	37		Literatur	62
4.3.2	Nährstoffemissionen	39			17650
		ne di Tiria		Nützliche Tipps	63
XI					

Conclusion:

- 1. The economic potential of marine living resources is tremendous
- 2. Marine Biotechnology created first businesses with **minor** economical **importance** within a **low-risk** business environment
- 3. The **integrity of the marine ecosystem is the basis** for tapping the tremendous innovation potential
- 4. Pollution and climate change are gnawing on ocean's integrity and thereby shrinking the innovation potential
- 5. A smart **management** of the marine ecosystem and its resources is **underdeveloped**

We add value to Marine Biodiversity

